
Fuzzy predicate values

Suppose we have a population of individuals, numbered . A𝑁 1.. 𝑁
function, , yields a real number indicating a certain feature, such as𝐻(𝑖)
"height", of each individual.

We wish to define a fuzzy predicate, , which yields a real number𝐻
𝑊

(𝑖)

indicating the degree of membership in a fuzzy set, such as "the set of
tall individuals". The fuzzy predicate will yield values near 0.0 for
individuals that are clearly not tall, values near 1.0 for individuals that
are clearly tall, and values between 0.0 and 1.0 for individuals that are
between not tall and tall. interpolates the relevant range of𝐻
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When a feature is evaluated across the entire fuzzy set Hw, each
individual is weighted according to its membership in the set. For
example, to measure the average mass, , across all members of ,𝑀 𝐻

𝑊

each member is weighted by , as follows:𝐻
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Note that the factor of indicates that half of instances are included as2
members and half are excluded.

We wish to use fuzzy predicates such as to express logical𝐻
𝑊

(𝑖)

relationships. In order to approximate conventional logical predicates,
our fuzzy predicates need to exhibit a few mathematical properties.
We need at least:

1. fuzzy truth values, and , to represent "false" and "true",𝐻
𝐹

𝐻
𝑇

2. a conjunction operator to predict coincidence of "true" predicates,



3. a negation operator to swap between "true" and "false".

Multiplication will be used to calculate conjunction, as it is with
Bayesian probabilities and likelihoods, where 0.0 represents "false".
Numeric negation, , will be used to calculate logical1. 0 −  𝐻

𝑤

negation. To make conjunction and negation work, all fuzzy set
non-members should have near to , and likewise all fuzzy set𝐻(𝑖) 𝐻

𝐹

members should have near to . This can be arranged by𝐻(𝑖) 𝐻
𝑇

choosing to be the mean of across fuzzy set non-members,𝐻
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and to be the mean of across fuzzy set members. Choosing𝐻
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and in this way ensures that non-members have zero net𝐻
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𝐻
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influence on a feature evaluated across members, while members
have zero net influence on a feature evaluated across non-members.
It also ensures that the member and non-member sets are
complementary sets, where each individual is included with total weight
1.0 in the union of the fuzzy set and its complement.

It's a little challenging to calculate and , since they are derived𝐻
𝐹

𝐻
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from set membership and they also determine set membership. The
proof below shows that and are exactly standard deviation𝐻
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Assuming that the mean of is zero, and ,𝐻(𝑖) 𝐻
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The chart below shows the density of individuals with each predicate
value , and the same density scaled according to membership in𝐻(𝑖)
the fuzzy set . For clarity, the individuals follow a normal𝐻

𝑊
(𝑖)

distribution with standard deviation 1.0. The data points at 𝐻(𝑖) =− 1
and are labeled as "false" and "true". These are assigned𝐻(𝑖) = 1
membership 0.0 and 1.0 respectively in the fuzzy set .𝐻

𝑊
(𝑖) 𝐻(𝑖) = 1

is the average of the scaled density below.



Notice that when and are centered in this way, many individuals𝐻
𝐹

𝐻
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are assigned membership below 0.0 or above 1.0. These outliers can
be understood as anti-members and super-members of the fuzzy set
respectively. Anti-members have characteristics opposite to those of
set members, while super-members have characteristics exaggerating
those of set members. After negation, would get weight 0.0, and𝐻

𝑇
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would get weight 1.0, and super-members of the fuzzy set would
become anti-members of its complement.

These fuzzy predicate values do the job of probabilities in Bayesian
inference. They define a generalization of probability that extends
below 0.0 and above 1.0. These fuzzy predicate values can be
regarded as the net rate of an event relative to the baseline rate. Using
these fuzzy predicate values, it is possible to infer Bayesian likelihoods
that express negative influences from hypotheses that are contrary to
the correct hypotheses. A negative likelihood indicates that a



hypothesis is not only unlikely to have been the cause of the observed
event, but is in fact more likely to have prevented the observed event.


